Treinamento de força: fatores neurais e produção de força muscular

  • Rafael Ribeiro Alves Universidade Federal de Goiás. Brasil
  • Anderson Miguel Cruz Universidade Estadual de Goiás. Brasil
  • Ademir Schmidt Pontifí­cia Universidade Católica de Goiás (PUC-GO)
  • Marcelo Henrique Silva Universidade Federal de Goiás (UFG)
  • Thayná Coelho Guimarães Universidade Federal de Goiás (UFG). Brasil
  • Ricardo Borges Viana Universidade Federal de Goiás (UFG). Brasil
Palavras-chave: Adaptação neural, Força muscular, Fatores neurais

Resumo

Introdução: A prática do treinamento de força (TF) promove várias adaptações funcionais, dentre as quais temos o aumento da força, constatado em maior magnitude nos primeiros meses de treinamento. Objetivo: Realizar um ensaio crí­tico sobre os possí­veis mecanismos ligados ao sistema nervoso central e a produção de força muscular. Materiais e Métodos: Foi realizada uma pesquisa de revisão bibliográfica nas bases de dados: MEDLINE, SCIELO e Periódicos CAPES. A seleção dos artigos foi pautada na relevância ao típico discutido. Adicionalmente, utilizou-se livros sobre a temática publicados nos últimos 7 anos. Resultados: Existe uma grande influência do sistema nervoso central na produção de força muscular através dos mecanismos: "spillover", irradiação motora, inibição recí­proca entre hemisférios, déficit bilateral, educação de forca cruzada, recrutamento de unidades motoras, frequência de disparos, aumento da taxa de desenvolvimento binário, bem como alterações no córtex motor a ní­vel cortical. Discussão: As evidências apontam para alterações agudas e crônicas do sistema neuromuscular em decorrência da prática do TF. Fatores como tipo de treinamento, volume, intensidade, fases da contração muscular podem influenciar não somente na magnitude de força produzia, mas também em alterações especificas de cada membro treinado. Conclusão: Os estí­mulos fisiológicos promovidos pelo treinamento podem desencadear alterações neurais em conjunto com o sistema muscular que afetam diretamente a magnitude da produção de força muscular através de vários mecanismos e fenômenos. Assim, conhecer tais fenômenos é extremamente importante para melhorar a prescrição do treinamento fí­sico.

Biografia do Autor

Rafael Ribeiro Alves, Universidade Federal de Goiás. Brasil

Programa de Pós-graduação em Nutrição e Saúde, Faculdade de Nutrição, Universidade Federal de Goiás

Anderson Miguel Cruz, Universidade Estadual de Goiás. Brasil

Escola Superior de Educação Fí­sica e Fisioterapia do Estado de Goiás, Universidade Estadual de Goiás

Ademir Schmidt, Pontifí­cia Universidade Católica de Goiás (PUC-GO)

Faculdade de Educação Fí­sica, Pontifí­cia Universidade Católica de Goiás

Marcelo Henrique Silva, Universidade Federal de Goiás (UFG)
Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Goiás
Thayná Coelho Guimarães, Universidade Federal de Goiás (UFG). Brasil

Faculdade de Educação Física e Dança, Universidade Federal de Goiás

Ricardo Borges Viana, Universidade Federal de Goiás (UFG). Brasil

Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Goiás

Referências

-Adamson, M.; MacQuaide; Niall, H.; Jan, H.; Jan K.; Ole, J. Unilateral arm strength training improves contralateral peak force and rate of force development. European Journal of Applied Physiology. Vol. 103. Num. 5. p. 553-559. 2008.

-Amarantini, D.; Bru, B. Training-related changes in the EMG-moment relationship during isometric contractions: Further evidence of improved control of muscle activation in strength-trained men? Journal of Electromyography and Kinesiology. Vol. 25.Num. 4. p. 697-702. 2015.

-American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise. Vol. 41,. Num. 3. p. 687-708. 2009.

-Andersen, L. L.; Andersen, J. L.; Magnusson, S.; Peter, A. P. Neuromuscular adaptations to detraining following resistance training in previously untrained subjects. European Journal of Applied Physiology. Vol. 93. Num. 5-6. p. 511-518. 2005.

-Artero, E. G. L.; Ruiz, D. C.; Sui, J. R.; Ortega, X.; Church, F. B.; Lavie, T. S.; Castillo, C. J.; Blair, M. J. A prospective study of muscular strength and all-cause mortality in men with hypertension. Journal of the American College of Cardiology. Vol. 57. Num. 18. p. 1831-1837. 2011.

-Balshaw, T. G.; Massey, G. J.; Maden-Wilkinson, T. M.; Morales-Artacho, A. J.; McKeown, A. A.; Clare L. F.; Jonathan, P. Changes in agonist neural drive, hypertrophy and pre-training strength all contribute to the individual strength gains after resistance training. European Journal of Applied Physiology. Vol. 117. Num. 4. p. 631-640. 2017.

-Baroni, B. M.; Rodrigues, R.; Franke, R.A.; Geremia, J.M.; Rassier, D.E.; Vaz, M.A. Time course of neuromuscular adaptations to knee extensor eccentric training. International Journal of Sports Medicine. Vol. 34. Num. 10. p. 904-911. 2013.

-Bear, M. F.; Connors, B. W.; Paradiso, M. A. Neurociência: desvendando o sistema nervoso. 2a edição ed. Porto Alegre: Artmed, 2006.

-Beurskens, R. G.; Albert, M.; Thomas C.; Marco G. U. Effects of heavy-resistance strength and balance training on unilateral and bilateral leg strength performance in old adults. PLoS ONE. Vol. 10. Num. 2. 2015.

-Billot, M. D.; Julien S. B.; Emilie M. B.; Yves M. A. Is co-contraction responsible for the decline in maximal knee joint torque in older males? Age. Vol. 36. Num. 2. p. 899-910. 2014.

-Bird, S. P.; Tarpenning, K. M.; Marino, F. E. Designing Resistance Training Programmes to Enhance Muscular Fitness. Sports Medicine. Vol. 35. Num. 10. p. 841-851. 2005.

-Bobbert, M. F.; Graaf, W. W. J.; Jan N. C.; Richard L. J. Explanation of the bilateral deficit in human vertical squat jumping. Journal of Applied Physiology. Vol. 100. Num. 2. p. 493-499. 2006.

-Carroll, T. J.; Herbert, R. D.; Munn, J. L.; Gandevia, S. C. Contralateral effects of unilateral strength training: evidence and possible mechanisms. Journal of Applied Physiology. Vol. 101. Num. 5. p. 1514-1522. 2006.

-Cormie, P.; Mcguigan, M. R.; Newton, R. U. Developing Maximal Neuromuscular Power. Sports Medicine. Vol. 41. Num. 1. p. 17-38. 2011.

-Czapla, Z.; Szczepanowska, E.; Cieslik, J. The Electrophoretic Mobility of Cell Nuclei (EMN) index and changes in acid-base homeostasis under conditions of the intensive physical exercise. Collegium Antropologicum. Vol. 31. Num. 4. p. 973-978. 2007.

-De França, H. S. B.; Paulo A. N.; Dilmar P. G. J.; Gentil, P.; James, S.; Cauê, V. L. S. T. The Effects of Adding Single-Joint Exercises To a Multi-Joint Exercise Resistance Training Program on Upper Body Muscle Strength and Size in Trained Men. Applied Physiology, Nutrition, and Metabolism. Vol. 826. Num. p. 822-826. 2015.

-De Vos, N. J. S.; Nalin, R. D. S.; Theodora, M. O.; Rhonda, F. S.; Maria A. Optimal load for increasing muscle power during explosive resistance training in older adults. The journals of gerontology. Series A, Biological Sciences and Medical Sciences. Vol. 60. Num. 5. p. 638-647. 2005.

-Eklund, D.; Pulverenti, T.; Bankers, S.; Avela, J.; Newton, R.; Schumann, M.; Häkkinen K. Neuromuscular adaptations to different modes of combined strength and endurance training.International Journal of Sports Medicine. Vol. 36. Num. 2. p. 120-129. 2015.

-Enoka, R. Bases Neuromecânicas da Cinesiologia. 2a edição. Barueri: Manole, 2000.

-Farthing, J. P.; Krentz, J. R.; Magnus, C. R. Strength training the free limb attenuates strength loss during unilateral immobilization. Journal of Applied Physiology. Vol. 106. Num. 3. p. 830-836. 2009.

-Ferri, A.; Scaglioni, G.; Pousson, M.; Capodaglio, P.; Van Hoecke, J.; Narici, M.V. Strength and power changes of the human plantar flexors and knee extensors in response to resistance training in old age. Acta Physiologica Scandinavica. Vol. 177. Num. 1. p. 69-78. 2003.

-Fimland, M. S.; Helgerud, J. S.; Gerd, M. I.; Vegard, M.Leivseth, G. H. J. Neural adaptations underlying cross-education after unilateral strength training. European Journal of Applied Physiology. Vol. 107. Num. 6.p. 723-730.2009.

-Fleck, S. J.; Kraemer, W. J. Fundamentos do treinamento de força muscular.4ª edição. Porto Alegre: Artmed, 2017.

-Gabriel, D. A.; Kamen, G.; Frost, G. Neural adaptations to resistive exercise: Mechanisms and recommendations for training practices. Sports Medicine. Vol. 36. Num. 2. p. 133-149. 2006.

-Geertsen, S. S.; Lundbye-Jensen, J.; Nielsen, J. B. Increased central facilitation of antagonist reciprocal inhibition at the onset of dorsiflexion following explosive strength training. Journal of Applied Physiology. Vol. 105. Num. 3. p. 915-922. 2008.

-Gentil, P. Bases cientificas do treinamento de hipertrofia. 5o edição. Rio de Janeiro: Sprint, 2014.

-Hay, D.; De SouzA, V. A.; Fukashiro, S. Human bilateral deficit during a dynamic multi-joint leg press movement. Human Movement Science. Vol. 25. Num. 2. p. 181-191. 2006.

-Hendy, A. M.; Spittle, M.; Kidgell, D. J. Cross education and immobilisation: Mechanisms and implications for injury rehabilitation. Journal of Science and Medicine in Sport. Vol. 15. Num. 2. p. 94-101. 2012.

-Higbie, E. J.; Cureton, K. J.; Warren, G. L.; Prior, B. M. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. Journal of Applied Physiology. Vol. 81. Num. 5. p. 2173-2781. 1996.

-Kubo, K. O.; Takeishi, R. K.; Yoshinaga, K.; Tsunoda, N.; Kanehisa, H.; Fukunaga, T. Effects of isometric training at different knee angles on the muscle tendon complex in vivo. Scandinavian Journal of Medicine and Science in Sports. Vol. 16. Num. 3. p. 159-167. 2006.

-Leenus, J.F.D.; Cuypers,K. B.; Nitsche, M.A.; Thijs, H. W.; Meesen, R. L. P 86. Increased tDCS intensity improves motor learning in healthy subjects. Clinical Neurophysiology. Vol. 124. Num. 10. p. e107. 2013.

-Lent, R. Cem bilhões de neurônios ?Conceitos fundamentais de neurociência. 2ª edição, Rio de Janeiro: Atheneu, 2010.

-Maeo, S. Y.; Yasuhide, T.; Yohei, F.; Tetsuo K. H. Neuromuscular adaptations following 12-week maximal voluntary co-contraction training. European Journal of Applied Physiology. Vol.114. Num. 4.p. 663-673. 2014.

-Magnus, C. B.; Trevor, S. L.; Joel, L. F., Jonathan, P. Effects of cross-education on the muscle after a period of unilateral limb immobilization using a shoulder sling and swathe. Journal of Applied Physiology. Vol. 109. p. 1887-1894. 2010.

-Mitchell, C. S.; Feng, S. S.; Lee, R. H. An analysis of glutamate spillover on the N-methyl-D-aspartate receptors at the cerebellar glomerulus. Journal of Neural Engineering. Vol. 4. Num. 3. p. 276-282. 2007.

-Morse, C. I.; Thom, J. M.; Mian, O. S.; Birch, K. M.; Narici, M. V. Gastrocnemius specific force is increased in elderly males following a 12-month physical training programme. European Journal of Applied Physiology. Vol. 100. Num. 5. p. 563-570.2007.

-Noorkõiv, M.; Nosaka, K.; Blazevich, A. J. Neuromuscular adaptations associated with knee joint angle-specific force change. Medicine and Science in Sports and Exercise. Vol. 46. Num. 8. p. 1525-1537. 2014.

-Pain, M. T. G. Considerations for single and double leg drop jumps: Bilateral deficit, standardizing drop height, and equalizing training load. Journal of Applied Biomechanics. Vol. 30. Num. 6. p. 722-727. 2014.

-Palmer, H. S.; Håberg, K. F.; Solstad, G. M.; Moe, I. V.; Hoff, J. H.; Eikenes, J. L. Structural brain changes after 4 wk of unilateral strength training of the lower limb. Journal of Applied Physiology. Vol. 115. Num. 2. p. 167-175. 2013.

-Paoli, A.; Moro, T.; Bianco, A. Lift weights to fight overweight. Clinical Physiology and Functional Imaging. Vol. 35. Num. 1.p. 1-6. 2015.

-Paulsen, G.; Myklestad, D.; Raastad, T. The influence of volume of exercise on early adaptations to strength training. Journal of Strength and Conditioning Research. Vol. 17.Num. 1. p. 115-120. 2003.

-Prestes, J.; Foschini, D.; Marchetti, P.; Charro, M. Prescrição e periodização do treinamento de força em academias. São Paulo: Manole, 2010.

-Radaelli, R. B.; Wilhelm, C. E.; Bottaro, M. L.; Gaya, F.; Moraes, A.; Peruzzolo, K.; Brown, A.; Lee E.; Pinto, R. S. Low-and high-volume strength training induces similar neuromuscular improvements in muscle quality in elderly women. Experimental Gerontology. Vol. 48. Num. 8. p. 710-716. 2013.

-Schmidt, R. Aprendizagem & performance motora. São Paulo: Editora Movimento, 1993.

-Vila-chã, C.; Falla, D.; Farina, D. Motor unit behavior during submaximal contractions following six weeks of either endurance or strength training. Journal of Applied Physiology. Vol. 109. Num. 5. p. 1455-1466. 2010.

-Walker, S P.; Sautel, J. S.; Kraemer, W. J.; Avela, J.; Häkkinen, K. Neuromuscular adaptations to constant vs. variable resistance training in older men. International Journal of Sports Medicine. Vol. 35. Num. 1. p. 69-74. 2014.

-Wilhelm, E. N.; Rech, A. M.; Botton, F.; Radaelli, C. E.; Teixeira, B. R.; Costa R. O.; Pinto, R. S. Concurrent strength and endurance training exercise sequence does not affect neuromuscular adaptations in older men. Experimental Gerontology. Vol. 60. p. 207-214. 2014.

Publicado
2018-10-26
Como Citar
Alves, R. R., Cruz, A. M., Schmidt, A., Silva, M. H., Guimarães, T. C., & Viana, R. B. (2018). Treinamento de força: fatores neurais e produção de força muscular. RBPFEX - Revista Brasileira De Prescrição E Fisiologia Do Exercício, 12(77), 757-766. Recuperado de https://www.rbpfex.com.br/index.php/rbpfex/article/view/1503
Seção
Artigos Científicos - Original