Combined effect of creatine monohydrate or creatine hydrochloride and caffeine supplementation in runners’performance and body composition

Jeferson Oliveira Santana, Elias de França, Diana Madureira, Bruno Rodrigues, Erico Chagas Caperuto

Resumo


Background Creatine monohydrate (CrM) and caffeine are two of the main substances used to enhance athletic performance although some studies say that they impair each other and CrM could promote weight gain. Objective evaluate the association of CrM or creatine hydrochloride (CrHCl) with caffeine (Caf) supplementation on runners’ performance and body composition. Methods 16 individuals, both genders (20-30 years) were randomly divided in 3 groups 1) CrM+Caf (n=6), 2) CrHCl+Caf (n=5) and 3) Placebo+Caf (n=5), they did four running sessions per week, during four weeks. Supplementation was given on a double blind manner, CrM+Caf (20g.day-1 per 7 days + 5 g.day-1 per 21 days of CrM), CrHCl+Caf (6g.day-1 per 7 days + 1.5 g.day-1 per 21 days of CrHCl) and Placebo+Caf (20g.day-1 per 7 days + 5 g.day-1 per 21 days of resistance starch). Caffeine ingestion was acutely administered for all groups, 6mg/kg-1 body weight, only in the last day of the experimental protocol. We collected PRE and POST-treatment, body fat (BF), body weight (BW), 10 km time trial (TT), rating of perceived exertion (RPE), delayed onset muscle soreness (DOMS) and gastrointestinal discomfort perception (GDP). Results No differences were found between groups for RPE, DOMS, BF, BW and GDP. TT decreased significantly for CrM+Caf and CrHCl+Caf group, but no for Placebo+Caf. BF decreased significantly in CrHCl+Caf group and lean body mass increased in CrM+Caf and CrHCl+Caf group. Conclusion These data suggest that either CrM or CrHCLsupplementation works synergistically with acute CAF supplementation improving running performance.

 

RESUMO

Efeito da combinação da suplementação de creatina monohidrato ou creatina cloridrato e cafeína na performance e na composição corporal de corredores

Creatina monohidratada (CrM) e cafeína são duas substâncias utilizadas para melhorar a performance atlética, embora alguns estudos sugerem que estas substâncias se prejudicam mutuamente, além da CrM promover ganho de peso. avaliar a associação da CrM ou creatina cloridrato (CrHCl) com a cafeína (Caf), na performance e composição corporal de corredores. 16 indivíduos, de ambos os gêneros (20-30 anos) foram divididos em 3 grupos 1) CrM+Caf (n= 6), 2) CrHCl+Caf (n= 5) e 3) Placebo+Caf (n= 5) para realizarem quatro treinos semanais (durante quatro semanas) suplementados com CrM (20g/dia por 7 dias + 5 g/dia por 21 dias) ou CrHCl (6g/dia por 7 dias + 1,5 g/dia por 21 dias) ou amido resistente (Placebo, 20g/dia por 7 dias + 5 g/dia por 21 dias) junto da suplementação aguda de cafeína (6mg/kg de peso corporal), que foi administrada somente no último dia do protocolo. Foram avaliados PRE e PÓS suplementação: gordura corporal (GC), peso corporal (PC), performance 10 km (P10km), percepção subjetiva de esforço (PSE), dor muscular de início tardio (DIT) e percepção de desconforto gastrointestinal (PDG). Não foram encontradas diferenças entre os grupos para PSE, DIT, GC, PC e PDG. O P10km diminuiu significativamente no grupo CrM+Caf e CrHCl+Caf, mas não para o grupo Placebo+Caf. A GC diminuiu significativamente no grupo CrHCl+Caf e a massa corporal magra aumentou no grupo CrM+Caf e CrHCl+Caf. Estes dados sugerem que a suplementação de CrM ou CrHCLfunciona sinergicamente com a suplementação aguda de Cafeína, melhorando a performance na corrida.


Palavras-chave


Caffeine; Creatine Monohydrate; Creatine Hydrochloride; Ergogenic; Running

Texto completo:

PDF (English)

Referências


-Aliev, M.; and collaborators. Molecular system bioenergics of the heart: experimental studies of metabolic compartmentation and energy fluxes versus computer modeling. International journal of molecular sciences. Vol. 12. Núm. 12. p. 9296-9331. 2011.

-Astorino, T. A.; Roupoli, L. R.; Valdivieso, B. R. Caffeine does not alter RPE or pain perception during intense exercise in active women. Appetite. Vol. 59. Núm. 2. p. 585-590. 2012.

-Borg, G. A.; Noble, B. J. Perceived exertion. Exercise and sport sciences reviews. Vol. 2. Núm. 1. p. 131-154. 1974.

-Branch, J. D. Effect of creatine supplementation on body composition and performance: a meta-analysis. International journal of sport nutrition and exercise metabolism. Vol. 13. p. 198-226. 2003.

-Cooper, R.; and collaborators. Creatine supplementation with specific view to exercise/sports performance: an update. Journal of the International Society of Sports Nutrition. Vol. 9. Núm. 1. p. 33. 2012.

-De França, E.; and collaborators. Creatine HCl and Creatine Monohydrate Improve Strength but Only Creatine HCl Induced Changes on Body Composition in Recreational Weightlifters. Food and Nutrition Sciences. Vol. 6. Núm. 17. p. 1624. 2015.

-De Morree, H. M.; Marcora, S. M. Psychobiology of Perceived Effort During Physical Tasks. In: (Ed.). Handbook of Biobehavioral Approaches to Self-Regulation: Springer. p. 255-270. 2015.

-Doherty, M.; and collaborators. Caffeine is ergogenic after supplementation of oral creatine monohydrate. Medicine and science in sports and exercise. Vol. 34. Núm. 11. p. 1785-1792. 2002.

-Donghia, P. S.; Xavier, A. P.; de França, E.; Santana, J. O.; Madureira, D.; Correa, S. C.; de Lira, F. S.; Caperuto, E. C. Caffeine supplementation (6mg/kg) improves total time to exhaustion in a fixed speed protocol, without physiological alterations in runners. Revista Brasileira de Prescrição e Fisiologia do Exercício. Vol. 10. Núm. 58. p. 214-219. 2016. Disponível em:

-Francaux, M.; Poortmans, J. Effects of training and creatine supplement on muscle strength and body mass. European journal of applied physiology and occupational physiology. Vol. 80. Núm. 2. p. 165-168. 1999.

-Ganio, M. S.; and collaborators. Effect of caffeine on sport-specific endurance performance: a systematic review. The Journal of Strength & Conditioning Research. Vol. 23. Núm. 1. p. 315-324. 2009.

-Gejl, K.; and collaborators. Muscle Glycogen Content Modifies SR Ca2+ Release Rate in Elite Endurance Athletes. Medicine and science in sports and exercise. Vol. 46. Núm. 3. p. 496-505. 2013.

-Glaister, M.; and collaborators. Caffeine supplementation and peak anaerobic power output. European Journal of Sport Science. Vol. 15. Núm. 5. p. 400-405. 2014.

-Gliottoni, R. C.; Motl, R. W. Effect of caffeine on leg-muscle pain during intense cycling exercise: Possible role of anxiety sensitivity. International journal of sport nutrition and exercise metabolism. Vol. 18. Núm. 2. p. 103. 2008.

-Gufford, B. T.; and collaborators. pH-Dependent Stability of Creatine Ethyl Ester: Relevance to Oral Absorption. Journal of dietary supplements. Vol. 10. Núm. 3. p. 241-251. 2013.

-Gufford, B. T.; and collaborators. Physicochemical characterization of creatine N-methylguanidinium salts. Journal of dietary supplements. Vol. 7. Núm. 3. p. 240-252. 2010.

-Hall, M.; Trojian, T. H. Creatine Supplementation. Current sports medicine reports. Vol. 12. Núm. 4. p. 240-244. 2013.

-Hespel, P.; Op‘T Eijnde, B.; Van Leemputte, M. Opposite actions of caffeine and creatine on muscle relaxation time in humans. Journal of Applied Physiology. Vol. 92. Núm. 2. p. 513-518. 2002. Disponível em:

-Hickner, R. C.; and collaborators. Effect of 28 days of creatine ingestion on muscle metabolism and performance of a simulated cycling road race. Journal of the International Society of Sports Nutrition. Vol. 7. Núm. 1. p. 26. 2010.

-Jackson, A. S.; Pollock, M. L. Generalized equations for predicting body density of men. British Journal of Nutrition. Vol. 40. Núm. 3. p. 497-504. 1978.

-Kim, J.; Lee, J. A review of nutritional intervention on delayed onset muscle soreness. Part I. Journal of exercise rehabilitation. Vol. 10. Núm. 6. p. 349. 2014.

-Kreider, R. B. Effects of creatine supplementation on performance and training adaptations. Molecular and cellular biochemistry. Vol. 244. Núm. 1-2. p. 89-94. 2003.

-Lanhers, C.; and collaborators. Creatine Supplementation and Lower Limb Strength Performance: A Systematic Review and Meta-Analyses. Sports Medicine. p. 1-10. 2015.

-Lee, C.-L.; Lin, J.-C.; Cheng, C.-F. Effect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performance. European Journal of Applied Physiology. Vol. 111. Núm. 8. p. 1669-1677. 2011.

-Mendes, A.; and collaborators. Quantification of left ventricular myocardial collagen system in children, young adults, and the elderly. Medicina. Vol. 72. Núm. 72. p. 216-220. 2012.

-Murphy, A.; and collaborators. Effects of creatine supplementation on aerobic power and cardiovascular structure and function. Journal of Science and Medicine in Sport. Vol. 8. Núm. 3. p. 305-313. 2005.

-Powers, M. E.; and collaborators. Creatine supplementation increases total body water without altering fluid distribution. Journal of athletic training. Vol. 38. Num. 1. p. 44. 2003.

-Pubchem. PubChem Compound Database. National Center for Biotechnology Information. CID=134732. 2017.

-Santos, M. G. D.; and collaborators. Estudo do metabolismo energético muscular em atletas por 31P-ERM. Revista da Associação Médica Brasileira. Vol. 50. p. 127-132. 2004a.

-Santos, R.; and collaborators. The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30km race. Life sciences. Vol. 75. Núm. 16. p. 1917-1924. 2004b.

-Schneiker, K. T.; and collaborators. Effects of Caffeine on Prolonged Intermittent-Sprint Ability in Team-Sport Athletes. Medicine & Science in Sports & Exercise. Vol. 38. Núm. 3. p. 578-585. 2006.

-Schubert, M. M.; Astorino, T. A. A systematic review of the efficacy of ergogenic aids for improving running performance. The Journal of Strength & Conditioning Research. Vol. 27. Núm. 6. p. 1699-1707. 2013.

-Spriet, L. L. Exercise and sport performance with low doses of caffeine. Sports medicine. Vol. 44. Núm. 2. p.175-184. 2014.

-Tang, F.-C.; Chan, C.-C.; Kuo, P.-L. Contribution of creatine to protein homeostasis in athletes after endurance and sprint running. European journal of nutrition. p. 1-11. 2013.

-Tarnopolsky, M. A. Caffeine and creatine use in sport. Annals of Nutrition and Metabolism. Vol. 57. Num. Suppl. 2. p. 1-8. 2011.

-Teekachunhatean, S.; and collaborators. Pharmacokinetics of Caffeine following a Single Administration of Coffee Enema versus Oral Coffee Consumption in Healthy Male Subjects. ISRN Pharmacology. Vol. 2013. p. 7. 2013.

-Tewari, S. G.; and collaborators. A Biophysical Model of the Mitochondrial ATP-Mg/Pi Carrier. Biophysical journal. Vol. 103. Núm. 7. p. 1616-1625. 2012.

-Vanakoski, J.; and collaborators. Creatine and caffeine in anaerobic and aerobic exercise: effects on physical performance and pharmacokinetic considerations. International journal of clinical pharmacology and therapeutics. Vol. 36. Núm. 5. p. 258-262. 1998.

-Vandenberghe, K.; and collaborators. Caffeine counteracts the ergogenic action of muscle creatine loading. 1996. p. 452-457. Disponível em:

-Vendelin, M.; Lemba, M.; Saks, V. A. Analysis of functional coupling: mitochondrial creatine kinase and adenine nucleotide translocase. Biophysical journal. Vol. 87. Núm. 1. p. 696-713. 2004.

-Warren, G. L.; and collaborators. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. Vol. 42. Núm. 7. p. 1375-1387. 2010.


Apontamentos

  • Não há apontamentos.


Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons

RBPFEX - Revista Brasileira de Prescrição e Fisiologia do Exercício

IBPEFEX - Instituto Brasileiro de Pesquisa e Ensino em Fisiologia do Exercício

Editor-Chefe: Francisco Navarro. E-mail para contato: aqui

Editor Gerente: Francisco Nunes Navarro. E-mail para contato: aqui