Chronic-degenerative diseases and aging: interaction between obesity, immunosenescence, and physical exercise

  • Wallace Machado Magalhães de Souza Centro de Cardiologia do Exercício (CCEx), Instituto Estadual de Cardiologia Aloysio de Castro (IECAC), Rio de Janeiro-RJ, Brasil.
  • Aline da Silva Barbosa Ferreira Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública Sérgio Arouca (ENSP/Fiocruz), Rio de Janeiro-RJ, Brasil; Superintendência de Vigilância em Saúde, Secretaria Municipal de Saúde do Rio de Janeiro (SVS/SMS-Rio), Rio de Janeiro-RJ, Brasil.
Keywords: low-grade inflammation, Cytokines, Interleukin-6, Aging

Abstract

Chronic degenerative diseases (CDD) are the leading cause of mortality worldwide, particularly cardiovascular diseases (CVD) and Chronic Obstructive Pulmonary Disease (COPD). There is a strong relationship between CDD, obesity, especially when there is an accumulation of fat in the abdominal region, and immunosenescence, where persistent and unresolved production of pro-inflammatory cytokines, mainly interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), leads to a state of low-grade inflammation, promoting functional and histological damage in various tissues. This inflammatory process leads to the onset of metabolic, neurodegenerative, and neoplastic diseases, in addition to CVD. Among the main non-pharmacological strategies for treating CDD are nutritional control and physical exercise. Thus, the objective of this article was to conduct a narrative review on the relationship between obesity, immunosenescence, and physical exercise. Physical exercise can promote several favorable adaptations for the prevention and control of CDD through the production of myokines and metabolic regulatory factors, such as PGC1α and brain-derived neurotrophic factor (BDNF), promoting a reduction in inflammatory state and a lower incidence of CDD.

References

-Adlard, P.A.; Perreau, V.M.; Pop, V.; Cotman, C.W. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J. Neurosci. Vol. 25. Núm. 17. 2005. p. 4217-4221.

-Alberts, J.L.; Rosenfeldt, A.B. The universal prescription for Parkinson's disease: Exercise. Journal of Parkinson's Disease. Vol. 10. Núm. s1. 2020. p. S21-S27.

-Almeida, F.O.; Santana, V.; Corcos, D.M.; Ugrinowitsch, C.; Silva-Batista, C. Effects of Endurance Training on Motor Signs of Parkinson’s Disease: A Systematic Review and Meta Analysis. Sports Medicine. Vol. 52. Núm. 8. 2022. p. 1789-1815.

-Barbé-Tuana, F.; Funchal, G.; Schmitz, C.R.R.; Maurmann, R.M.; Bauer, M.E. The interplay between immunosenescence and age-related diseases. Seminars in Immunopathology. Vol. 42. Núm. 5. 2020. p. 545-557.

-Chen, X; Sun, X; Wang, C.; He, H. Effects of Exercise on Inflammatory Cytokines in Patients with Type 2 Diabetes: A Meta-analysis of Randomized Controlled Trials. Vol. 2020. 2020. p. 1-12.

-Cotman, C.W.; Berchtold, N.C.; Christie, L. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. Vol. 30. Núm. 9. 2007. p. 464-472.

-Ding, Y.H. Li, J.; Zhou, Y.; Rafols, J.A.; Clarck, J.C.; Ding, Y. Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr. Neurovasc. Res. Vol.3. Núm. 1. 2006. p. 15-23.

-Duggal, N.A.; Pollock, R.D.; Lazarus, N.R.; Harridge, S.; Lord, J.M. Major features of immunesenescence, including reduced thymic output, are ameliorated by high levels of physical activity in adulthood. Aging Cell. Vol. 17. Núm. 2. 2018. p. 1-13.

-Feng, Y.S.; Yang, S.D.; Tan, Z.; Wang, M.M.; Xing, Y.; Dong, F.; Zhang, F. The benefits and mechanisms of exercise training for Parkinson's disease. Life Sci., Vol. 245. Núm. 15. 2020. p. 1-10.

-Fiatarone, M.A.; Marks, E.C.; Ryan, N.D.; Meredith, C.N.; Lipsitz, L.A.; Evans, W.J. High-intensity strength training in nonagenarians. JAMA. Vol. 263. Núm. 22. 1990. p. 3029-3034.

-Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. Vol. 14. Núm. 10. 2018. p. 576-590.

-Hambrecht, R.; Walther, C.; Möbius-Winkler, S.; Gielen, S.; Linke, A.; Conradi, K.; Erbs, S.; Kluge, R.; Kendziorra, K.; Sabri, O.; Sick, P.; Schuler, G. Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial. Circulation. Vol. 109. Núm. 11. 2004. p. 1371-1378.

-Handschin, C.; Spiegelman, B.M. The role of exercise and PGC1α in inflammation and chronic disease. Nature. Vol. 454. Núm. 24. 2008. p.463-469.

-Kohut, M.L.; Arntson, B.A.; Lee, W.; Rozeboom, K.; Yonn, K.J.; Cunnick, J.E.; McElhaney, J. Moderate exercise improves antibody response to influenza immunization in older adults. Vaccine. Vol. 2. Núm. 22. 2004. p. 2298-2306.

-Kuipers, S.D.; Bramham, C.R. Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy. Curr. Opin. Drug Discov. Vol. 9. Núm. 5. 2006. p. 580-586.

-Lazarov, O.; Robinson, J.; Tang, Y.P.; Hairston, I.S.; Korade-Mirnics, Z.; Lee, V.M.; Hersh, L.B.; Sapolsky, R.M.; Mirnics, K.; Sisodia, S.S. Environmental enrichment reduces Ab levels and amyloid deposition in transgenic mice. Cell. Vol. 120. Núm. 5. 2005. p. 701-713.

-Li, X.; Gao, Z.; Yu, H.; Gu, Y.; Yang, G. Effect of Long-term Exercise Therapy on Motor Symptoms in Parkinson Disease Patients: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Am J Phys Med Rehabil. Vol. 101. Núm. 10. 2022. p. 905-912.

-Liu, Z.; Liang, Q.; Ren, Y.; Guo, C.; Ge, X.; Wang, L.; Cheng, Q.; Luo, P.; Zhang, Y.; Han, X. Immunosenescence: molecular mechanisms and diseases. Signal Transduction and Targeted Therapy. Vol. 13. Núm. 8. 2023. p. 1-16.

-Pedersen, B.K.; Steensberg, A.; Schjerling, P. Muscle-derived interleukin-6: possible biological effects. Journal of Physiology. Vol. 536. Núm. 2. 2001. p. 329-337.

-Pedersen, B.K.; Akerström, T.C.A.; Nielsen, A.R.; Fischer, C.P. Role of myokines in exercise and metabolism. J Appl Physiol. Vol. 103. Núm. 3. 2007. p. 1093-1098.

-Pereira, S.S.; Alvarez-Leite, J.L. Low-grade inflammation, obesity, and diabetes. Curr Obes Rep. Vol. 3. Núm. 4. 2014. p. 422-431.

-Rodrigues, L.P.; Teixeira, V.R.; Alencar-Silva, T.; Simonassi-Paiva, B.; Pereira, R.W.; Pogue, R.; Carvalho, J.L. Hallmarks of aging and immunosenescence: Connecting the dots. Cytokine and Growth Factor Reviews. Vol. 59. 2021. p. 9-21.

-Seifert, T.; Brassard, P.; Wissenberg, M.; Rasmussen, P.; Nordby, P.; Stallknecht, B.; Adser, H.; Jakobsen, A.H.; Pilegaard, H.; Nielsen, H.B.; Secher, N.H. Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol. Vol. 298. Núm. 2. 2010. p. R372-R377.

-Silveira, L.S.; Biondo, L.A.; Teixeira, A.A.S.; Lima Junior, E.A.; Castoldi, A.; Câmara, N.O.S.; Festuccia, W. T.; Rosa-Neto, J.C.; Lira, F.S. Macrophage immunophenotype but not anti-inflammatory profile is modulated by peroxisome proliferator-activated receptor gamma (PPARγ) in exercised obese mice. Exerc Immunol Rev. Vol. 26. 2020. p-10-22.

-Steensberg, A.; Hall, G.V.; Osada, T.; Sacchetti, M.; Saltin, B.; Pedersen, B.K. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. Journal of Physiology. Vol. 529. Núm. 1. 2000. p. 237-242.

-Teri, L. Gibbsons, L.E.; McCurry, S.M.; Logsdon, R.G.; Buchner, D.M.; Barlow, W.E.; Kukull, W.A.; LaCroix, A.Z.; McCormick, W.; Larson, E.B. Exercise plus behavioral management in patients with Alzheimer Disease. JAMA. Vol. 290. Núm. 15. 2003. p. 2015-2022.

-Tonet, A.C.; Nóbrega, O.T. Imunossenescência: a relação entre leucócitos, citocinas e doenças crônicas. Rev. Bras. Geriatr. Gerontol. Vol. 11. Núm. 2. 2008. p. 259-273.

-Trejo, J.L.; Carro, E.; Torres-Aleman, I. Circulating Insulin-Like Growth Factor I Mediates Exercise-Induced Increases in the Number of New Neurons in the Adult Hippocampus. The Journal of Neuroscience. Vol. 21. Núm. 5. 2001. p. 1628-1634.

-WHO. World Health Organization. The top 10 causes of death (2000-2019). Disponível em: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Acessado em: 03/05/2024.

Published
2025-03-13
How to Cite
Souza, W. M. M. de, & da Silva Barbosa Ferreira, A. (2025). Chronic-degenerative diseases and aging: interaction between obesity, immunosenescence, and physical exercise. Brazilian Journal of Exercise Prescription and Physiology, 19(119), 124-130. Retrieved from https://www.rbpfex.com.br/index.php/rbpfex/article/view/2984
Section
Scientific Articles - Review