Lactate removal kinetics on brazilian jiu-jitsu athletes

  • Roberto Francisco Pereira Programa de Pós-graduação Lato Sensu da Universidade Gama Filho em Fisiologia do Exercí­cio: Prescrição do Exercí­cio
  • Charles Ricardo Lopes Laboratório de Bioquí­mica do Exercí­cio (Labex). Departamento de Bioquí­mica, Instituto de Biologia, CP UNICAMP, Campinas, SP, Brasil
  • Clodoaldo José Dechechi Faculdades Estácio de Sá - FAESO. Ourinhos, São Paulo
  • Bruno Corrêa Victor Laboratório de Bioquí­mica do Exercí­cio (Labex). Departamento de Bioquí­mica, Instituto de Biologia, CP UNICAMP, Campinas, SP, Brasil
  • Bernardo Neme Ide Laboratório de Bioquí­mica do Exercí­cio (Labex). Departamento de Bioquí­mica, Instituto de Biologia, CP UNICAMP, Campinas, SP, Brasil
  • Antonio Coppi Navarro Programa de Pós-graduação Lato Sensu da Universidade Gama Filho em Fisiologia do Exercí­cio: Prescrição do Exercí­cio. Programa de Pós-Graduação Stricto Sensu em Engenharia Biomédica da UMC
Keywords: Brazilian Jiu-Jitsu, Lactate removal, MCTs

Abstract

We aimed with the present study, to observe the capacity of lactate production, and its kinetics of removal from muscle to blood, and from blood to other tissues after completion specific efforts of the Brazilian Jiu-jitsu (BJJ). We hypothesize to find high concentrations of blood lactate ([Lac]) after the fights, but until 10 minutes after observed significant decrease in [Lac]. Seven male athletes of BJJ (age = 30.4 ± 4.6 years, body mass = 85.4 ± 6.5 kg, height = 1.8 ± 0.1 m; years of practice = 5.1 ± 1.7) underwent a BJJ fight of 7 minutes length. The kinetics of lactate removal wasassessed on 6 moments: immediately after the fight (0), and 2, 5, 10, 15, and 20 minutes after the end of them. The data normality of data was determined by the Kolmogorov-Smirnov test, and analysis of difference between the means were compared using ANOVA, with significant reference value of P <0.05. We observed significant differences between collections relating to 15 and 20 to 0 (p <0.01). Our hypothesis to found a high [Lac] after exercise was confirmed. We observed [Lac] of 14.2 ± 5.9, illustrating a large contribution of the glycolytic pathway for this sport. However, the ability to remove the group showed significant decreases only 15 minutes after the end of the activity, despite some individual athletes tended to remove quickly. Observed that the [Lac] in the analyzed group were reduced significantly only at 15 compared to 0, and 20 compared to 0. Individually, it was in well-differentiated athletes for this kinetics, indicating that the ability to remove [Lac] may be subject to large intersubject individuality.

References

- Bonen, A. Lactate transporters (MCT proteins) in heart and skeletal muscles. Med Sci Sports Exerc. Vol. 32. Num. 4. 2000. p. 778-89.

- Bonen, A.; Mccullagh, K. J. A.; Putman, C. T.; Hultman, E.; Jones, N. L.; Heigenhauser, G. J. F. Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate. American Journal of Physiology- Endocrinology And Metabolism. Vol. 274. Num. 1. 1998. p. 102-107.

- Bret, C.; Messonnier, L.; Nouck Nouck, J. M.; Freund, H.; Dufour, A. B.; Lacour, J. R. Differences in lactate exchange and removal abilities in athletes specialised in different track running events (100 to 1500 m). Int J Sports Med. Vol. 24. Num. 2. 2003. p. 108-13.

- Brooks, G. A.; Brown, M. A.; Butz, C. E.; Sicurello, J. P.; Dubouchaud, H. Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1. Am Physiological Soc. Vol. 87. Num. 5. 1999. p. 1713-1718.

- Dubouchaud, H.; Butterfield, G. E.; Wolfel, E. E.; Bergman, B. C.; Brooks, G. A. Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. Am Physiological Soc. Vol. 278. Num. 4. 2000. p. 571-579.

- Franchini, E.; Takito, M. Y.; De Moraes Bertuzzi, R. C.; Kiss, M. Nível competitivo, tipo de recuperação e remoção do lactato após uma luta de judô. Revista Brasileira de Cineantropometria Desempenho Humano. Vol. 6. Num. 1. 2004. p. 07-16.

- Franchini, E.; Takito, M. Y.; Nakamura, F. Y.; Matsushigue, K. A.; Kiss, M. Tipo de Recuperação após uma Luta de Judô e o Desempenho Anaeróbio Intermitente Subseqüente. Motriz. Vol. 7. Num. 1. 2001. p. 49-52.

- Gladden, L. B. Muscle as a consumer of lactate. Med Sci Sports Exerc. Vol. 32. Num. 4. 2000a. p. 764-71.

- Gladden, L. B. The role of skeletal muscle in lactate exchange during exercise: introduction. Med Sci Sports Exerc. Vol. 32. Num. 4. 2000b. p. 753-5.

- Gladden, L. B. Lactic acid: New roles in a new millennium. Proc Natl Acad Sci U S A. Vol. 98. Num. 2. 2001. p. 395-7.

- Gladden, L. B. Lactate metabolism: a new paradigm for the third millennium. J Physiol. Vol. 558. Num. 2004. p. 5-30.

- Gladden, L. B. Mammalian skeletal muscle can convert lactate to glycogen. J Appl Physiol. Vol. 100. Num. 6. 2006. p. 2109.

- Gladden, L. B. Is there an intracellular lactate shuttle in skeletal muscle? J Physiol. Vol. 582. Num. 3. 2007. p. 899.

- Juel, C. Lactate/proton co-transport in skeletal muscle: regulation and importance for pH homeostasis. Acta Physiol Scand. Vol. 156. Num. 3. 1996. p. 369-74.

- Juel, C. Lactate-proton cotransport in skeletal muscle. Physiol Rev. Vol. 77. Num. 2. 1997. p. 321-58.

- Juel, C. Current aspects of lactate exchange: lactate/H+ transport in human skeletal muscle. Eur J Appl Physiol. Vol. 86. Num. 1. 2001. p. 12-6.

- Juel, C. Training-induced changes in membrane transport proteins of human skeletal muscle. Eur J Appl Physiol. Vol. 96. Num. 6. 2006. p. 627-35.

- Juel, C. Regulation of pH in human skeletal muscle: adaptations to physical activity. Acta Physiol (Oxf). Vol. 193. Num. 1. 2008. p. 17-24.

- Juel, C.. Na+-K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity. Am J Physiol Regul Integr Comp Physiol. Vol. 296. Num. 1. 2009. p. R125-32.

- Juel, C.; Halestrap, A. P. Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter. J Physiol. Vol. 517. Num. Pt 3. 1999. p. 633-42.

- Juel, C.; Holten, M. K.; Dela, F. Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans. J Physiol. Vol. 556. Num. 1. 2004. p. 297-304.

- Juel, C.; Klarskov, C.; Nielsen, J. J.; Krustrup, P.; Mohr, M.; Bangsbo, J. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol Endocrinol Metab. Vol. 286. Num. 2. 2004. p. E245-51.

- Juel, C.; Nielsen, j. J.; Bangsbo, J. Exercise-induced translocation of Na(+)-K(+) pump subunits to the plasma membrane in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. Vol. 278. Num. 4. 2000. p. R1107-10.

- Messonnier, L.; Freund, H.; Denis, C.; Feasson, L.; Lacour, J. R. Effects of training on lactate kinetics parameters and their influence on short high-intensity exercise performance. Int J Sports Med. Vol. 27. Num. 1. 2006. p. 60-6.

- Robergs, R. A. Exercise-induced metabolic acidosis: where do the protons come from. Sportscience. Vol. 5. Num. 2. 2001.

- Robergs, R. A.; Ghiasvand, F.; Parker, D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. Vol. 287. Num. 3. 2004. p. R502-16.

Published
2012-01-01
How to Cite
Pereira, R. F., Lopes, C. R., Dechechi, C. J., Victor, B. C., Ide, B. N., & Navarro, A. C. (2012). Lactate removal kinetics on brazilian jiu-jitsu athletes. Brazilian Journal of Exercise Prescription and Physiology, 5(25). Retrieved from https://www.rbpfex.com.br/index.php/rbpfex/article/view/300
Section
Scientific Articles - Original