Eccentric muscle movements - Why Generate more power? Why Generate more trauma?
Abstract
The models proposed by Huxley of crossbridges and sliding of myofilaments normally explain the molecular and cellular mechanisms that occur during all kinds of muscular actions. However, these models cannot explain the residual force enhancement consistently observed in skeletal muscles following active stretching and its complete molecular mechanisms remains unknown. The literature points the development of sarcomere length non-uniformities and the engagement of passive elements as responsible to this residual force enhancement. The purpose of this study was to review the recent hypothesis to explain the generation and increase of force during and after eccentric contractions. We discussed about the cross- bridge theory and ATP hydrolysis during the concentric and eccentric actions. The molecular consequences of the continuity of the action potential in the formation of thecross-bridges and the action of the proteins titin, nebulin, miomesin and protein C as passive elements in the generation of force during the sarcomere stretching and in the maintenance of the myofibril integrity.
References
- Abbott, B.C.; Aubert, X.M. Changes of energy in a muscle during very slow stretches. Proc R Soc Lond B Biol Sci. Vol. 139. Num. 894. 1951. p.104-17.
- Barstow, I.K.; Bishop, M.D.; e colaboradores. Is enhanced-eccentric resistance training superior to traditional training for increasing elbow flexor strength? Journal of Sports Science and Medicine. Vol. 2. 2003. p.62-69.
- Booth, F.W.; Baldwin, K.M. Muscle plasticity: energy demand and supply processes. Handbook of Physiology. Exercise: Regulation and Integration of Multiple Systems. 1996. p.1075-123.
- Caruso, J.F.; Hernandez, D.A., e colaboradores. Inclusion of eccentric actions on net caloric cost resulting from isoinertial resistance exercise. J Strength Cond Res. Vol. 17. Num. 3. 2003. p. 549-555.
- Charge, S.B.; Rudnicki, M. A. Cellular and molecular regulation of muscle regeneration. Physiol Rev. Vol. 84. Num. 1. 2004. p. 209-238.
- Clark, K.A., Mcelhinny, A.S., e colabotadores. Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol. Vol. 18. 2002. p. 637-706.
- Coffey, V.G.; Hawley, J.A. The molecular bases of training adaptation. Sports Med. Vol. 37. Num. 9. 2007. p.737-763.
- Curtin, N.A.; Davies, R.E. Very high tension with very little ATP breakdown by active skeletal muscle. Journal of Mechanochemistry & Cell Motility. Vol. 3. Num. 2. 1975. p.147.
- Doan, B.K., Newton, R.U.; e colaboradores. Effects of increased eccentric loading on bench press 1RM. J Strength Cond Res. Vol. 16. Num. 1. 2002. p. 9-13.
- Dudley, G.A.; Tesch, P.A.; e colaboradores. Influence of eccentric actions on the metabolic cost of resistance exercise. Aviat Space Environ Med. Vol. 62. Num. 7. 1991. p. 678-682.
- ______. Importance of eccentric actions in performance adaptations to resistance training. Aviat Space Environ Med. Vol. 62. Num. 6. 1991. p. 543-550.
- Edman, K.A.; Caputo, C.; e colaboradores. Depression of tetanic force induced by loaded shortening of frog muscle fibres. J Physiol. Vol. 466. 1993. p. 535-552.
- Edman, K.A., Elzinga, G., e colaboradores. Residual force enhancement after stretch of contracting frog single muscle fibers. J Gen Physiol. Vol. 80. Num. 5. 1982. p. 769-774.
- Ehler, E.; Rothen, B.M.; e colaboradores. Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J Cell Sci. Vol. 112. 1999. p. 1529-1539.
- Enoka, R.M. Eccentric contractions require unique activation strategies by the nervous system. J Appl Physiol. Vol. 81. Num. 6. 1996. p. 2339-2346.
- Friden, J. Delayed onset muscle soreness. Scand J Med Sci Sports. Vol. 12. Num. 6. 2002. p. 327-328.
- Friden, J.; Lieber, R.L. Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol Scand. Vol. 171. Num. 3. 2001. p. 321-6.
- Friedmann, B.; Kinscherf, R.; e colaboradores. Muscular adaptations to computerguided strength training with eccentric overload. Acta Physiol Scand. Vol. 182. Num. 1. 2004. p. 77-88.
- Fry, A.C. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. Vol. 34. Num. 10. 2004. p. 663-679.
- Gibala, M.J.; Macdougall, J.D.; e colaboradores. Changes in human skeletal muscle ultrastructure and force production after acute resistance exercise. J Appl Physiol. Vol. 78. Num. 2. 1995. p. 702-708.
- Goll, C.M.; Pastore, A.; e colaboradores. The three-dimensional structure of a type I module from titin: a prototype of intracellular fibronectin type III domains. Structure. Vol. 6. Num. 10. 1998. p. 1291-1302.
- Hather, B.M.; Tesch, P.A.; e colaboradores. Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiol Scand. Vol. 143. Num. 2. 1991. p. 177-185.
- Hawke, T.J. Muscle stem cells and exercise training. Exerc Sport Sci Rev. Vol. 33. Num. 2. 2005. p. 63-68.
- Hawke, T.J.; Garry, D.J. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol. Vol. 91. Num. 2. 2001. p. 534-551.
- Herzog, W.; Lee, E.J.; e colaboradores. Residual force enhancement in skeletal muscle. J Physiol. Vol. 574. 2006. p. 635-642.
- Hollander, D.B.; Kraemer, R.R.; e colaboradores. Maximal eccentric and concentric strength discrepancies between young men and women for dynamic resistance exercise. J Strength Cond Res. Vol. 21. Num. 1. 2007. p. 34-40.
- Horowits, R.; Kempner, E.S.; e colaboradores. A physiological role for titin and nebulin in skeletal muscle. Nature. Vol. 323. Num. 6084. 1986. p.160-164.
- Hortobagyi, T.; Devita, P. Favorable neuromuscular and cardiovascular responses to 7 days of exercise with an eccentric overload in elderly women. J Gerontol A Biol Sci Med Sci. Vol. 55. Num. 8. 2000. p. 401-410.
- Hortobagyi, T.; Devita, P.; e colaboradores. Effects of standard and eccentric overload strength training in young women. Med Sci Sports Exerc. Vol. 33. Num. 7. 2001. p. 1206-1212.
- Houmeida, A.; Holt, J.; e colaboradores. Studies of the interaction between titin and myosin. J Cell Biol. Vol. 131. Num. 6. 1995. p.1471-1481.
- Huxley, A.F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. Vol. 7. 1957. p. 255-318.
- ______. Muscular contraction. J Physiol. Vol. 243. Num. 1. 1994. p.1-43.
- ______. The origin of force in skeletal muscle. Ciba Found Symp. Num. 31. 1975. p. 271-290.
- Improta, S.; Politou, A.S.; e colaboradores. Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure. Vol. 4. Num. 3. 1996. p. 323-337.
- Julian F.J.; Morgan, D.L. The effect on tension of non-uniform distribution of length changes applied to frog muscle fibres. J Physiol. Vol. 293. 1979. p. 379-392.
- Komi, P.V.; Buskirk, E.R. Effect of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle. Ergonomics. Vol. 15. Num. 4. 1972. p. 417-434.
- Labeit, S.; Kolmerer, B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science. Vol. 270. Num. 5234. 1995. p. 293-296.
- Mahoney, D.J.; Parise, G.; e colaboradores. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise: FASEB. Vol. 19. 2005. p. 1498-500.
- Mcbride, J.M.; Triplett-Mcbride, T.; e colaboradores. Characteristics of titin in strength and power athletes. Eur J Appl Physiol. Vol. 88. Num. 6. 2003. p. 553-557.
- Mchugh, M.P.; Connolly, D.A., e colaboradores. Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Med. Vol. 27. Num. 3. 1999. p.157-170.
- Mchugh, M.P.; Pasiakos, S. The role of exercising muscle length in the protective adaptation to a single bout of eccentric exercise. Eur J Appl Physiol. V. 93. Num. 3. 2004. p. 286-293.
- Morgan, D.L. An explanation for residual increased tension in striated muscle after stretch during contraction. Exp Physiol. Vol. 79. Num. 5. 1994. p. 831-838.
- Moritani, T.; Muramatsu, S.; e colaboradores. Activity of motor units during concentric and eccentric contractions. Am J Phys Med. Vol. 66. Num. 6. 1987. p. 338-350.
- Nosaka, K.; Newton, M. Difference in the magnitude of muscle damage between maximal and submaximal eccentric loading. J Strength Cond Res. Vol. 16. Num. 2. 2002. p. 202-208.
- Nosaka, K.; Sakamoto, K.; e colaboradores. How long does the protective effect on eccentric exercise-induced muscle damage last?. Med Sci Sports Exerc. Vol. 33. Num. 9. 2001a. p.1490-1495.
- ______. The repeated bout effect of reduced-load eccentric exercise on elbow flexor muscle damage. Eur J Appl Physiol. Vol. 85. Num. 1-2. 2001b. p. 34-40.
- Ojasto, T.; Hakkinen, K. Effects of different accentuated eccentric load levels in eccentric-concentric actions on acute neuromuscular, maximal force, and power responses. J Strength Cond Res. Vol. 23. Num. 3. 2009a. p. 996- 1004.
- ______. Effects of different accentuated eccentric loads on acute neuromuscular, growth hormone, and blood lactate responses during a hypertrophic protocol. J Strength Cond Res. Vol. 23. Num. 3. 2009b. p. 946-953.
- Patel, T.J.; Das, R.; e colaboradores. Sarcomere strain and heterogeneity correlate with injury to frog skeletal muscle fiber bundles. J Appl Physiol. Vol. 97. Num. 5. 2004. p.1803-1813.
- Rassier, D.E.; Herzog, W. Force enhancement and relaxation rates after stretch of activated muscle fibres. Proc Biol Sci. Vol. 272. Num. 1562. 2005a. p. 475-480.
- ______. Relationship between force and stiffness in muscle fibers after stretch. J Appl Physiol. Vol. 99. Num. 5. 2005b. p. 1769-1775.
- Smith, L.L.; Anwar, A.; e colaboradores. Cytokines and cell adhesion molecules associated with high-intensity eccentric exercise. Eur J Appl Physiol. Vol. 82. Num. 1-2. 2000. p. 61-67.
- Soteriou, A.; Clarke, A.; e colaboradores. Titin folding energy and elasticity. Proc Biol Sci. Vol. 254. Num. 1340, Nov 22, p.83-6. 1993.
- Trappe, T.A., Carrithers, J. A., e colaboradores. Titin and nebulin content in human skeletal muscle following eccentric resistance exercise. Muscle Nerve. Vol. 25. Num. 2. 2002. p. 289-292.
- Wang, K.; Wright, J. Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol. Vol. 107. Num. 6. 1988. p. 2199-2212.
Authors who publish in this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication, with work simultaneously licensed under the Creative Commons Attribution License BY-NC which allows the sharing of the work with acknowledgment of the authorship of the work and initial publication in this journal.
- Authors are authorized to enter into additional contracts separately for non-exclusive distribution of the version of the work published in this journal (eg, publishing in institutional repository or book chapter), with acknowledgment of authorship and initial publication in this journal.
- Authors are allowed and encouraged to post and distribute their work online (eg, in institutional repositories or on their personal page) at any point before or during the editorial process, as this can bring about productive change as well as increase impact and impact. citation of published work (See The Effect of Free Access).