Acciones musculares excéntricas: ¿por qué generan más potencia? ¿Por qué generan más trauma?
Resumen
Los modelos propuestos por Huxley, de puentes cruzados y deslizamiento de miofilamentos, se utilizan para explicar los mecanismos moleculares y celulares que ocurren durante los diferentes tipos de acciones musculares. Sin embargo, la observación sistemática del aumento de la resistencia residual posterior al estiramiento no puede explicarse mediante estos modelos, y los mecanismos moleculares completos involucrados en este fenómeno aún se desconocen. Entre las hipótesis existentes para explicarlo, las más aceptadas son la no uniformidad e inestabilidad de la longitud de los sarcómeros, y el acoplamiento de elementos pasivos, representados por otras proteínas presentes en la estructura sarcomérica. Además de estas, existen otras hipótesis para explicar este fenómeno, que no pueden ser despreciadas. El objetivo de este estudio fue revisar las teorías más recientes propuestas para explicar la generación y aumento de fuerza durante y después de acciones excéntricas. Discutimos la teoría del filamento deslizante, el gasto de ATP durante las acciones concéntricas y excéntricas, las consecuencias moleculares de la continuidad del potencial de acción en la formación de puentes cruzados y la acción de la titina, la nebulina, la miomesina y la proteína C como elementos pasivos en la generación de fuerza durante la elongación del sarcómero. y mantenimiento de la integridad miofibrilar.
Citas
- Abbott, B.C.; Aubert, X.M. Changes of energy in a muscle during very slow stretches. Proc R Soc Lond B Biol Sci. Vol. 139. Num. 894. 1951. p.104-17.
- Barstow, I.K.; Bishop, M.D.; e colaboradores. Is enhanced-eccentric resistance training superior to traditional training for increasing elbow flexor strength? Journal of Sports Science and Medicine. Vol. 2. 2003. p.62-69.
- Booth, F.W.; Baldwin, K.M. Muscle plasticity: energy demand and supply processes. Handbook of Physiology. Exercise: Regulation and Integration of Multiple Systems. 1996. p.1075-123.
- Caruso, J.F.; Hernandez, D.A., e colaboradores. Inclusion of eccentric actions on net caloric cost resulting from isoinertial resistance exercise. J Strength Cond Res. Vol. 17. Num. 3. 2003. p. 549-555.
- Charge, S.B.; Rudnicki, M. A. Cellular and molecular regulation of muscle regeneration. Physiol Rev. Vol. 84. Num. 1. 2004. p. 209-238.
- Clark, K.A., Mcelhinny, A.S., e colabotadores. Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol. Vol. 18. 2002. p. 637-706.
- Coffey, V.G.; Hawley, J.A. The molecular bases of training adaptation. Sports Med. Vol. 37. Num. 9. 2007. p.737-763.
- Curtin, N.A.; Davies, R.E. Very high tension with very little ATP breakdown by active skeletal muscle. Journal of Mechanochemistry & Cell Motility. Vol. 3. Num. 2. 1975. p.147.
- Doan, B.K., Newton, R.U.; e colaboradores. Effects of increased eccentric loading on bench press 1RM. J Strength Cond Res. Vol. 16. Num. 1. 2002. p. 9-13.
- Dudley, G.A.; Tesch, P.A.; e colaboradores. Influence of eccentric actions on the metabolic cost of resistance exercise. Aviat Space Environ Med. Vol. 62. Num. 7. 1991. p. 678-682.
- ______. Importance of eccentric actions in performance adaptations to resistance training. Aviat Space Environ Med. Vol. 62. Num. 6. 1991. p. 543-550.
- Edman, K.A.; Caputo, C.; e colaboradores. Depression of tetanic force induced by loaded shortening of frog muscle fibres. J Physiol. Vol. 466. 1993. p. 535-552.
- Edman, K.A., Elzinga, G., e colaboradores. Residual force enhancement after stretch of contracting frog single muscle fibers. J Gen Physiol. Vol. 80. Num. 5. 1982. p. 769-774.
- Ehler, E.; Rothen, B.M.; e colaboradores. Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J Cell Sci. Vol. 112. 1999. p. 1529-1539.
- Enoka, R.M. Eccentric contractions require unique activation strategies by the nervous system. J Appl Physiol. Vol. 81. Num. 6. 1996. p. 2339-2346.
- Friden, J. Delayed onset muscle soreness. Scand J Med Sci Sports. Vol. 12. Num. 6. 2002. p. 327-328.
- Friden, J.; Lieber, R.L. Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol Scand. Vol. 171. Num. 3. 2001. p. 321-6.
- Friedmann, B.; Kinscherf, R.; e colaboradores. Muscular adaptations to computerguided strength training with eccentric overload. Acta Physiol Scand. Vol. 182. Num. 1. 2004. p. 77-88.
- Fry, A.C. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. Vol. 34. Num. 10. 2004. p. 663-679.
- Gibala, M.J.; Macdougall, J.D.; e colaboradores. Changes in human skeletal muscle ultrastructure and force production after acute resistance exercise. J Appl Physiol. Vol. 78. Num. 2. 1995. p. 702-708.
- Goll, C.M.; Pastore, A.; e colaboradores. The three-dimensional structure of a type I module from titin: a prototype of intracellular fibronectin type III domains. Structure. Vol. 6. Num. 10. 1998. p. 1291-1302.
- Hather, B.M.; Tesch, P.A.; e colaboradores. Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiol Scand. Vol. 143. Num. 2. 1991. p. 177-185.
- Hawke, T.J. Muscle stem cells and exercise training. Exerc Sport Sci Rev. Vol. 33. Num. 2. 2005. p. 63-68.
- Hawke, T.J.; Garry, D.J. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol. Vol. 91. Num. 2. 2001. p. 534-551.
- Herzog, W.; Lee, E.J.; e colaboradores. Residual force enhancement in skeletal muscle. J Physiol. Vol. 574. 2006. p. 635-642.
- Hollander, D.B.; Kraemer, R.R.; e colaboradores. Maximal eccentric and concentric strength discrepancies between young men and women for dynamic resistance exercise. J Strength Cond Res. Vol. 21. Num. 1. 2007. p. 34-40.
- Horowits, R.; Kempner, E.S.; e colaboradores. A physiological role for titin and nebulin in skeletal muscle. Nature. Vol. 323. Num. 6084. 1986. p.160-164.
- Hortobagyi, T.; Devita, P. Favorable neuromuscular and cardiovascular responses to 7 days of exercise with an eccentric overload in elderly women. J Gerontol A Biol Sci Med Sci. Vol. 55. Num. 8. 2000. p. 401-410.
- Hortobagyi, T.; Devita, P.; e colaboradores. Effects of standard and eccentric overload strength training in young women. Med Sci Sports Exerc. Vol. 33. Num. 7. 2001. p. 1206-1212.
- Houmeida, A.; Holt, J.; e colaboradores. Studies of the interaction between titin and myosin. J Cell Biol. Vol. 131. Num. 6. 1995. p.1471-1481.
- Huxley, A.F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. Vol. 7. 1957. p. 255-318.
- ______. Muscular contraction. J Physiol. Vol. 243. Num. 1. 1994. p.1-43.
- ______. The origin of force in skeletal muscle. Ciba Found Symp. Num. 31. 1975. p. 271-290.
- Improta, S.; Politou, A.S.; e colaboradores. Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure. Vol. 4. Num. 3. 1996. p. 323-337.
- Julian F.J.; Morgan, D.L. The effect on tension of non-uniform distribution of length changes applied to frog muscle fibres. J Physiol. Vol. 293. 1979. p. 379-392.
- Komi, P.V.; Buskirk, E.R. Effect of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle. Ergonomics. Vol. 15. Num. 4. 1972. p. 417-434.
- Labeit, S.; Kolmerer, B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science. Vol. 270. Num. 5234. 1995. p. 293-296.
- Mahoney, D.J.; Parise, G.; e colaboradores. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise: FASEB. Vol. 19. 2005. p. 1498-500.
- Mcbride, J.M.; Triplett-Mcbride, T.; e colaboradores. Characteristics of titin in strength and power athletes. Eur J Appl Physiol. Vol. 88. Num. 6. 2003. p. 553-557.
- Mchugh, M.P.; Connolly, D.A., e colaboradores. Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Med. Vol. 27. Num. 3. 1999. p.157-170.
- Mchugh, M.P.; Pasiakos, S. The role of exercising muscle length in the protective adaptation to a single bout of eccentric exercise. Eur J Appl Physiol. V. 93. Num. 3. 2004. p. 286-293.
- Morgan, D.L. An explanation for residual increased tension in striated muscle after stretch during contraction. Exp Physiol. Vol. 79. Num. 5. 1994. p. 831-838.
- Moritani, T.; Muramatsu, S.; e colaboradores. Activity of motor units during concentric and eccentric contractions. Am J Phys Med. Vol. 66. Num. 6. 1987. p. 338-350.
- Nosaka, K.; Newton, M. Difference in the magnitude of muscle damage between maximal and submaximal eccentric loading. J Strength Cond Res. Vol. 16. Num. 2. 2002. p. 202-208.
- Nosaka, K.; Sakamoto, K.; e colaboradores. How long does the protective effect on eccentric exercise-induced muscle damage last?. Med Sci Sports Exerc. Vol. 33. Num. 9. 2001a. p.1490-1495.
- ______. The repeated bout effect of reduced-load eccentric exercise on elbow flexor muscle damage. Eur J Appl Physiol. Vol. 85. Num. 1-2. 2001b. p. 34-40.
- Ojasto, T.; Hakkinen, K. Effects of different accentuated eccentric load levels in eccentric-concentric actions on acute neuromuscular, maximal force, and power responses. J Strength Cond Res. Vol. 23. Num. 3. 2009a. p. 996- 1004.
- ______. Effects of different accentuated eccentric loads on acute neuromuscular, growth hormone, and blood lactate responses during a hypertrophic protocol. J Strength Cond Res. Vol. 23. Num. 3. 2009b. p. 946-953.
- Patel, T.J.; Das, R.; e colaboradores. Sarcomere strain and heterogeneity correlate with injury to frog skeletal muscle fiber bundles. J Appl Physiol. Vol. 97. Num. 5. 2004. p.1803-1813.
- Rassier, D.E.; Herzog, W. Force enhancement and relaxation rates after stretch of activated muscle fibres. Proc Biol Sci. Vol. 272. Num. 1562. 2005a. p. 475-480.
- ______. Relationship between force and stiffness in muscle fibers after stretch. J Appl Physiol. Vol. 99. Num. 5. 2005b. p. 1769-1775.
- Smith, L.L.; Anwar, A.; e colaboradores. Cytokines and cell adhesion molecules associated with high-intensity eccentric exercise. Eur J Appl Physiol. Vol. 82. Num. 1-2. 2000. p. 61-67.
- Soteriou, A.; Clarke, A.; e colaboradores. Titin folding energy and elasticity. Proc Biol Sci. Vol. 254. Num. 1340, Nov 22, p.83-6. 1993.
- Trappe, T.A., Carrithers, J. A., e colaboradores. Titin and nebulin content in human skeletal muscle following eccentric resistance exercise. Muscle Nerve. Vol. 25. Num. 2. 2002. p. 289-292.
- Wang, K.; Wright, J. Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol. Vol. 107. Num. 6. 1988. p. 2199-2212.
Los autores que publican en esta revista aceptan los siguientes términos:
- Los autores conservan los derechos de autor y otorgan a la revista el derecho de primera publicación, con el trabajo licenciado simultáneamente bajo la Creative Commons Attribution License BY-NC permitiendo el intercambio de trabajo con reconocimiento de la autoría del trabajo y publicación inicial en esta revista.
- Los autores están autorizados a celebrar contratos adicionales por separado, para la distribución no exclusiva de la versión del trabajo publicado en esta revista (por ejemplo, publicar en un repositorio institucional o como capítulo de un libro), con reconocimiento de autoría y publicación inicial en esta revista. .
- Se permite y se anima a los autores a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) en cualquier momento antes o durante el proceso editorial, ya que esto puede generar cambios productivos así como incrementar el impacto y la citación de la publicación. trabajo publicado (Vea El Efecto del Accesso Abierto). Vea el efecto del acceso abierto